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Generalized compressibility equation for inhomogeneous fluids at equilibrium
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A general relation is derived between the pressure tensor in an equilibrated inhomogeneous fluid and
the direct correlation function. This relation reduces to the usual compressibility equation for a homo-
geneous fluid and is to be considered as the generalized compressibility equation. The equation provides
a starting point for integral-equation theories and is useful in the rigorous kinetic theory of inhomogene-

ous fluids.

PACS number(s): 47.17.+¢, 03.40.—t, 05.20.—y, 03.65.Db

I. INTRODUCTION

The behavior of classical fluids in the hydrodynamic
regime is described by parameters that are locally, or
pointwise, related, e.g., pressure p (n) as a function of the
number density n. These relationships are expressible in
microscopic form, the critical linear response (known as
the compressibility equation)

B%Zl—nfdrc(n,r) (1)

being a typical example; here B=1/kT is reciprocal tem-
perature, k denotes Boltzmann’s constant, and ¢ (n,r) is
the familiar Ornstein-Zernike direct correlation function
for a uniform fluid at density n. The partial derivative in
Eq. (1) (and all other partial and Fréchet derivatives
below) is at constant temperature.

As the spatial scale contracts, there is a phenomeno-
logical region in which thermal equilibrium still applies,
but the local relationships no longer hold. In this region
the identification of thermal and mechanical quantities is
no longer obvious.

The mere absence of locality is not a problem. For ex-
ample, one could generalize Eq. (1) by noting that if the
density n(r) is locally homogeneous (i.e., homogeneous
on the scale of correlation length), the grand-canonical
potential [ n] is given by

Q=— [p(n(r)dr, )
so that an analog of Eq. (1) would be
3(—=BQ[n)) _, _ , ,
) 1T [dre@,r. (3)

A rigorous version of this expression encompassing
fluids of any degree of inhomogeneity can also be derived.
Thus, the Fréchet derivative of the grand potential Q[n],
considered as a functional of the density pattern n(R),
can be written as

8(—BQ[n]) _ . 8(—BAn]) Sin(r)
e ey @
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where p;,[n;r]=p—v(r), denoting the intrinsic chemical

potential [1] of the inhomogeneous fluid, is considered as

a functional of the density pattern n(R); v(r) and u are

an external field and the chemical potential, respectively.
Noticing [2] that

Ol I) _ 1 s ) —elnsrr) 5)
dn(r)  n(r) r=r)—ein;r,.o,
and
—58Q[n] _ ,
dui(n;r') n(r'), (©

one can derive from Egs. (4), (5), and (6),

8(—=pQ[n]) _

Bn(r) l—fdrn(r )e[n;r,r'], (7)

where c[n;r,r'] is the inhomogeneous two-point direct
correlation function [1] considered as a functional of the
density pattern n (R).

Although Eq. (7), which is an inhomogeneous adjoint
of Eq. (1), is readily obtained, the local pressure hidden in
Q[n] [see Eq. (2)] and its relation to mechanical balance
of forces must be elucidated.

II. EXISTENCE OF THE LOCAL PRESSURE
IDENTIFIED AS THE GRAND-CANONICAL
POTENTIAL DENSITY

A nominally extensive thermodynamic quantity Q[n]
can be easily decomposed as an integral of an appropriate
local density gq[n;r'], Q[n]= fq [n;r']ldr’. However,
two restrictions should be applied. First is that when the
system becomes locally homogeneous, g[n;r'] depends
only upon the number density » (r') at r’ (in this discus-
sion we consider that the temperature is uniform). Since
the nonlocality of g [n;r'] is generally only via correla-
tion functions, this tends to be automatic. Second is that,
on the assumption that physical space itself is homogene-
ous, any physical quantity must be independent of a con-
stant shift a of the origin of the coordinate system used.
This means that if one defines the shift-transformed num-
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ber density n®! by nl2l=pn(r—a), then any physical
function of space and functional of the number density
must satisfy the condition

Q[n'®

whose infinitesimal version is

Q[n;r'r”, ... ], (8)

;r'—a,r'’'—a,...]=

fdrV n(r)

on ( ) Qln;r',r", ... ]

={Vo+V+---1Q[n;r',r",...1, (9

where V_, V., V., etc. denote d/dr, 3/0r’, 3/9r", etc.,
respectively.

Now suppose that Q[#] is a functional of the number
density for which Q[0]=0, and that n,(r) is a “trajecto-

ry” of the density pattern for which ny(r)=0,

n,(r)=n(r) (the condition A=0 is a convenience, not a
necessity). Hence,
Q[n]=Q[n,;]—Qlno]
= [ 'aracgn,1)/on

:foldkfdr{ank(r)/ak}a[Q[nk]}/ank(r) )

and one can choose
8Q[n,] on,(r)
n;(r) oA

qln;r]= f dh—— (10)
as a “Q density.”

A particular choice of the path {n,(r)} in Eq. (10)
clearly depends upon the nature of the functional Q[n].
To focus on the local pressure, we would be interested in
the grand-canonical potential [n]. One can recall that

Q[n] is related to the intrinsic Helmholtz free energy
F[n],

F[n]=F,[n]— [drn(cw(r), (1
via the relation
Fln]=Q[n)+ [drn(Dpyln;r], (12)

where F,[n] is the total Helmholtz free energy. Certain-
ly, one would like to maintain »n(r)u;,[n;r] as the
local density for fdrn(r),uin[n;r]. In this case, it is
easy to show that Eq. (10) implies that
n,(r')dn,(r)/dA=n;(r)dn,(r') /0A, which restricts the
trajectory to the simple case

n,(r)=An(r) . (13)
The result (13) simplifies Eq. (10) to the expression
o ) 1dA
qgln;r] n(r)Sn(r) [f —Q[n x]’ (14)

which is equivalent to the statement that if Q[n]
Zfdrn(r)SR [n]/8n(r), then gq[n;r]=n(r)8R[n]/
6n(r) will be the “Q density” associated witk Q[n].
From Eq. (10) itself and Eq. (12) one can conclude that in
terms of intrinsic free-energy density

fln;r] r)f dApg[nysr], (15)

for which F[ n]=ff[n ;r]dr, there exists a local pres-
sure,

n(u[n;r]—f[n;r], (16)
1=~ [poln;rldr.

poln;r]=

in terms of which Q[n

III. THE GENERALIZED COMPRESSIBILITY
EQUATION (GCE)

Equation (16) has deep conceptual consequences. In
this section, for example, we show that there exists a
pressure tensor P[n;r] which describes the coupling of
mechanical and thermal quantities,

V. P[n;r]=—n(r)Vu(r), (17)

and for which traditionally one can relate py[n ;r] of Eq.
(16) to +TrP[n;r], where TrP[n;r] means the trace of
the tensor P[n;r] [the dot in Eq. (17) denotes the inner
product]. An external field v (r) then encompasses both
actual and inertial forces.

Although P[n;r] of Eq. (17) is not uniquely defined, it
is still fairly strongly constrained by consistency of the lo-
cality condition (9) with Eq. (17). Applying the condition
(9) to both V-P[n;r]and —n(r)Vw (r)=n(r)V u,(n;r]
in Eq. (17) and using Eq. (5) one can derive

6P[n;

=Vrn(r)—n(r)fdrzvzn(rz)c[n;r,rz] . (18)

Now one can define the tensor A[n;r,r,] by

oP[n;r]

B on (rz)

={8(r—r,)—n(r)c[n;r,r,]}1
+n(r)Aln;r,1,], (19)

where I is the unit matrix and 8(r—r,) denotes Dirac’s
delta function. It is obvious that Eq. (19) is just a repre-
sentation of any solution 8P[n ;r]/8n (r,) of Eq. (18), and
henceforth Eq. (17), in a more convenient form [which
can be always written due to the form of Eq. (18)] in
terms of an unknown tensor A[n;r,r,]. As we show
below, the tensor A[n;r,r,] is related to the nontrivial
remainder in the generalization of Eq. (1) to its analog for
inhomogeneous fluids.

From compatibility of Eq. (19) in the limit case of a
uniform fluid with Eq. (1) it follows that the tensor
A[n;r,r,] must satisfy the condition

fdrzA[n;r,r2]=fdr Aln;r,r,]=0. (20)

Integration of Eq. (19) over r, and taking the trace of
both sides of this equation gives

o Bl =1t e

+n(r)4Tr

fdrzA[n;r,rz]l , (21)
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where p[n;r]=1TrP[n;r].
6p[n;r]/én(r,)=(8p/8n)6(r—r,), and from Eq. (21)
one can recover Eq. (1). Thus, Eq. (21) can be considered
as the GCE for inhomogeneous fluids, and the general-
ized compressibility y[# ;r] can be defined by the expres-
sion

For a homogeneous fluid

X[n;r]— r 8" rz)

1
[ f Sp[n;r] ‘ ’ 22)
which reduces to Y =[ndp /3n] ! for a uniform fluid.

If the number density changes the same way at every
point in space, n(r)—n(r)+dn, then for any physical
quantity Q[n] satisfying the condition (8) one will have
dQ[n]=Q[n +dn]—Q[n]={fdrSQ[n]/Sn(r)}dn, SO

In this case one can apply Eq. (23) immediately to Eq.
(19) to get a simplified version of the GCE,

i) — )
B Plnir]= 1=n(r) [drycln;r,n,] |1

+n(r)fdr2A[n;r,r2] . (24)

Both the rigorous version of the GCE, Eq. (19), and its
simplified version, Eq. (24), are very satisfactory if the
trace of the pressure tensor P[n;r] is related to py[n;r]
of Eq. (16). To establish such a relation, one must decide
on how to represent P[n;r].

There are numerous expressions for the pressure tensor
in the literature [2-9], all guaranteed to satisfy the
mechanical equilibrium condition (17), but only one of

aQ[n] _ 8Q[n] . . .
“an f () (23)  these [9] is expressed as a number density functional,
J
Sf[n;r—(1—vy)r4]
Plnse)=(n(ehlmsr] =/ Insel I+ [ ey [ ldy =00 SV ety 25)
which is valid for any f [n;r] obtained from F[n] via Eq. (10),
on (r)
flnsr)= [ dhplnyrl—— . (26)

In particular, if the trajectory is given by Eq. (13), £ [n;r] reduces to the form (15), and Eq. (25) reduces to

BP[n;r]=Bpo[n;r]I—fdrsfoldyfoldM[nA;r

(1=y)r3,r+yr3ln[r—

(1=9)r3]r3Von (r+yr;) . 27

In Egs. (25) and (27) the heterogeneity difference between P[n ;r] and py[n;r]I is spelled out explicitly. Hence, using
Egs. (19) and (27) one can write the tensor A[# ;r,r,] explicitly in a somewhat complicated form,

n(r)Aln;r,1,] If d)»kfdr3 n(r)d(r,—r;)—

n(ry)8(r—r,)]c[n,;r,r5]

—fdr3f0 dyn(r+yr3—r3)r3vrn(r+yr3)f01d7»7kzc[n;\;r—(l—y)r3,r+yr3,r2]

1 1 p1 1
+fody?f0 dAAc nk;rz,?[r—(l—y)rz]][I—(r—rz)vr]n

where the third member of the direct correlation function
hierarchy [1], c(n,;r—(1—y)r;,r+yr3,1,), appears as
well.

IV. CLOSING REMARKS

From the above considerations it is clear that the CGE
(21) for an inhomogeneous fluid in equilibrium follows
from the locality condition (8) and the mechanical equi-
librium condition (17). Thus, any invariant [in the sense
of Eq. (8)] solution of Eq. (17), i.e., any pressure tensor
satisfying the mechanical equilibrium condition, should
satisfy the GCE (21) automatically. Also, the pressure
tensor must be a functional of the number density pat-
tern, and its trace must allow an identification as the
grand-canonical potential density. However, the GCE
(21) contains the tensor A[n;r,r,] which is not explicitly
known unless a particular solution of the mechanical
equilibrium equation is obtained explicitly.

Among explicit expressions [2—-9] for the pressure ten-

1
—[r—(1—y)r , (28)
y[ Y 2]]

—

sor of an equilibrium, inhomogeneous fluid the only one
satisfying all the requirements above is the pressure ten-
sor (25) of Ref. [9]. This definition supplies a closure of
the explicit GCE derivation problem via the explicit ex-
pression (28) for the heterogeneity difference A.

Obviously, any other tensorial solution of the mechani-
cal equilibrium equation (17) satisfying the above condi-
tions would generate another explicit form of the tensor
A. However, the structure of the GCE (21) and its reduc-
tion (24) will remain unchanged.

In common with Eq. (1), the GCE (21) is very general,
in the sense that it does not rely on assumptions concern-
ing the nature of the intermolecular forces, and, hence-
forth, applies, for example, to inhomogeneous fluid com-
posed of nonspherical molecules, and to fluid systems
where intermolecular interactions are nonadditive. Thus,
this equation is applicable to most inhomogeneous sys-
tems in equilibrium, such as fluids at interfaces or those
confined in narrow capillary pores of several molecular
diameters in width.
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A further application, of particular interest for us, is
in a rigorous kinetic theory of inhomogeneous fluids
[10-12], in which the kinetic equations involve the pres-
sure tensor for equilibrium, inhomogeneous fluids. In the
framework of this theory, using the GCE (21) together
with the pressure tensor (25) assures consistency of the
kinetic theory of inhomogeneous fluids with the kinetic
theory of the corresponding homogeneous fluids [13,14].

The GCE (21) allows further generalization which
takes into consideration orientation-dependent external
fields, v (r,w), and involves orientation correlation func-
tions [15].
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